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Oblique-Basi ' Model Method

» Theidea: to combine different shell model bases:

* m-scheme spherical shell-model
o SU(3) wmmetrvbased shell-model
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Problemsthat we under stand well

exactly solvable (symmetry at play)

AA//pertur bative regime
0
otV

(a)+H,(B) +...<— What about morethan one

\ exactly solvable part beyond
Transition from phase oné~_the perturbative regime?

'» to phase two should occur.

Can two or more different sets of basis states be used
to gain a deeper understanding of the basic physics?



The Challengein Nuclei...

Nuclel display unique characteristics:

e Single-particle Features
e Pairing Correlations
* Defor mation/Rotations
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Outline of the Talk

> Introduction...

» General motivation...
(exactly solvable «& symmetry, small perturbation, ...)

» Two-mode toy model: the harmonic oscillator in a box

» Real nucla:
Interplay b/w single-particle & collective excitations

» Conclusions
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Harmonic Oscillationsfor
System Near Equilibrium

V(X) =V, + % Mw?X*

hw

A quantized 1D oscillator is
an exactly solvable system
with equally spaced levels:

E. = ha)(n + l)
2

AE = hw



Particlein 1D Box

Finite Volume
Confinement

—

from a 3D bag
to
a 1D box

]
-a a

A gquantized 1D box isan
exactly solvable system
with discrete energy levels
with increasing spacing:

E, = l(@)Z(n +1)°

" 2\ 2a
2
AE =l(@) (2n+1)
2\ 2a



Two-Mode Toy System

B Spectrum

[ S > of particle
In 1D Box
~ (perturbed)
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"""" 1 5, Spectrum
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Hamiltonian Matrix
In Oblique Basis
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Spectral Structure

1D Box + 1D HO
(m=1, a=n/2, w=4)
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L evels above ~10 (below ~ 4)

‘a® =19.74

coincidewith the levels of
particlein 1D Box (HO).

First 8 levels convergeto

exact results (~0.01%) at

d~4+10=14 oblique basis.
(18 standard basis)

38.7579 385172
31.282 30.9981 32
SD |
26
— 24.7905 24 ARBA 045
22
19.2158 18.9197
.............. B e—— e g g
14 14.402 14.3297
— 12.5
e 10.0908 N 10.6352
7.5797 8
6 6.01196
2 2.00069 2
1D HO Exact 1D Box



The Challengein Nuclei...

Nuclel display unique characteristics:

e Single-particle Features
e Pairing Correlations
* Defor mation/Rotations

|
[

Closed
Shell

Closed
Shell

Pairing Rotations Vibrations

>
e
e
Q.
<
>oeres
R




Nuclear Shdell-M ode Hamiltonian

H = Eeia;ai + Evijkl a'aja8 = EgiNi + XQ° Q+ U yya

]k, i
where @" and &, are fermion creation and annihilation operators,
& and Vijkl arereal and Vijkl =Vk|ij = _Vjikl = _Vijlk

» Spherical shell-model basis states are eigenstates of the one-body
part of the Hamiltonian - single-particle states.

» The two-body part of the Hamiltonian H is dominated by the
quadr upole-quadrupoleinteraction Q-Q ~ C, of SU(3).

» SU(3) basis states - collective states - are eigenstates of H for
degenerate single particle energies € and a pure Q-Q interaction.



Eigenvalue Problem in an Oblique Basis

¢ Spherical basisstatese € SU(3) basisstates E

b ¢ Overlap matrix g J
e

e )

¢ The eigenvalue problem

Hy=Ey = H-§y=E§y



Current Evaluation Steps

Matrix elements
(Hand g)

:

SM basis
(spherical) || (cylindrical)

g=UUT (Cholesky)
(UHTHU! (UP)=E (UP)

Eigenstates (Lanczos)

SU(3) basis

T 1

m-scheme

A

E>

€ and <j,j,J'T'|V[j,j,J"T">

Expectation values and
matrix elements of

various operators
<O0>and <E,| O |[E,>




Example of an Obliqgue Basis Calculation: Mg

We use the Wildenthal USD interaction and denote the spherical basis by

SM (#) where # is the number of nucleons outside the d., shell, the SU(3) basis
consists of the leading irrep (8,4) and the next to the leading irrep, (9,2).

Model Space | SU3 SU3+ GT100 | SM(0) | SM(1) | SM(2) | SM(4) | Full
(84) | (84) & (9,2
Dimension | 23 128 500 29 449 2829 | 18290 | 28503
(m-scheme)
% 0.08 0.45 1.75 0.10 1.57 9.92 64.17 100

Visualizing the SU(3) space
with respect to the SM space
using the naturally induced
basis in the SU(3) space.

SU(3) basis space

SM space

SM(2) & SU3+

SU(3) basis space

SM space

SM (4) & SU3+




Convergence of Mg Ground State
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Mg - Level Structure
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Obliqgue Basis Spectral Results
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Overlapswith the Exact Eigenstates
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.SM(Z) 57.77 53.02 39.78 42.50 42.99 35.92
.(8,4) 63.02 63.77 71.49 59.46 70.15 54.14
ESM(2)+(8,4)&(9,2) 91.58 90.95 87.72 89.06 87.35 82.23
DSM(4) 93.25 92.81 89.98 92.47 91.10 88.33
.SM(4)+(8,4)&(9,2) 98.57 98.73 97.92 98.41 98.55 96.59

Eigenvectors



Summary

Use of two different sets of states can enhance our
under standing of complex systems.

» There Is better dimensional convergence.
» Correct level order of the low-lying states.

» Significant overlap with the exact states.



